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Scaling of fracture strength in ZnO: Effects of pore/grain-size
interaction and porosity
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Abstract

Recent experiments on the fracture strength of zinc oxide (ZnO) ceramics showed that the size of specimens has almost no influence on their
mean strength although strength data of a set of nominally identical specimens are still found to scatter. It is suspected that the complex nature
of defect–microstructure interaction and the high density of porosity in ZnO ceramics are possible reasons for this insensitivity to strength
scaling. In the paper, numerical results obtained by finite element analysis show that the fracture strength of ZnO is more influenced by the
pore/grain-size interaction than only by the size of a pore or its shape. As a consequence, the pore/grain-size interaction will increase the
fracture probability of small pores and lead to a homogenisation of critical flaw sizes. Furthermore, the high degree of porosity, especially the
heterogeneous distribution and clustering of pores, could favour further homogenisation of critical crack sizes. This implies that the fracture
strength of ZnO is insensitive to the size of specimens as corroborated by experiments. Finally a simple statistical explanation is given.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Ceramics have been widely applied in engineering due to
their excellent resistance to heat, corrosion, and wear. But,
ceramics also are very sensitive to flaws and have a disposi-
tion to brittle failure. Their fracture strength, i.e., the max-
imum stress they can withstand, varies unpredictably from
component to component even if a set of nominally iden-
tical specimens are tested under the same conditions. Gen-
erally speaking, the strength of brittle materials decreases
as the size of specimens increases, and this so-called size
effect can be well described by Weibull statistical fracture
theory.1–7 Recent experiments on the fracture strength of
electroceramics, however, have shown that it is not always
so. The strength data of zinc oxide (ZnO), applied for varis-
tors, are still found to scatter, but the size of specimens has
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no evident influence on their mean strength.8–10 The latter
is obviously in conflict with Weibull statistical theory.

Extensive fractographic investigations of ceramics have
shown that the failure usually originates from pre-existing
defects (such as inclusions, microcracks and pores), which
may arise from their intrinsic microstructures or imperfect
processing.11–13 In most cases, fracture strength of ceram-
ics, similar to other brittle materials, is controlled by the
properties of critical flaws or microstructures (such as size,
shape, orientation, etc.). As an example, grain size has a
clear effect on fracture strength of ceramics. For a coarse
grained material fracture strength shows a strong increase
with decreasing grain size. Conversely, for the fine grained
materials, fracture strength increases only slightly or remains
constant with decreasing grain size.14–16

As is well known, electroceramics, such as ZnO and
barium titanate (BaTiO3), are mainly designed and opti-
mised with respect to their electrical rather than mechanical
properties as in the case for structural ceramics like silicon
nitride (Si3N4), silicon carbide (SiC), etc. and thus they
usually contain a high degree of porosity which might act
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as the origin of fracture. Although mechanical properties
including elastic modulus, strength, and toughness usually
decrease with increasing porosity in brittle materials, it is
suspected that the complex nature of defect–microstructure
interaction and the high density of porosity are possible
reasons for the insensitivity to strength scaling discovered
in ZnO ceramics.8–10 In order to verify this hypothesis,
and more generally, to understand the scaling behaviour
of the strength of electroceramics containing high den-
sities of flaws, the effects of pore/grain-size coupling
and porosity on the fracture strength in ZnO need to be
investigated.

In this paper, based on experimental results and fracto-
graphic observations, several finite element models are pro-
posed to explore the intrinsic mechanism or causes of the
observed behaviour in ZnO ceramics. The basic principle
of Weibull strength distribution and experimental results are
briefly introduced in the following section. Then the descrip-
tion of finite element models and main numerical results are
given in Sections 3 and 4. Finally a simple statistical ex-
planation is suggested inSection 5, and a short summary is
attached inSection 6.

2. Strength distribution and size effect

Fracture strength of brittle materials is strongly related to
the details of defects, such as their sizes, orientation, distri-
butions, etc. It is often supposed that a small volume element
in a brittle material is like a link of a chain with many links.
If any link breaks, then the whole material will fail. Based on
this weakest link principle and an empirical power law func-
tion, a statistical distribution function of wide applicability,
i.e., the well known Weibull distribution, was proposed.5–7

Here the cumulative failure probability of a brittle material
subjected to an applied stressσ can be represented as:

P(σ, V) = 1 − exp

[
− V

V0

(
σ

σ0

)m]
, (1)

whereV is the volume of a specimen,V0 is the reference
volume,σ0 is the characteristic strength, andm is the Weibull
modulus, which is a measure of the scatter of strength data.

If two specimens with different sizes have the same prob-
ability of failure, fromEq. (1) it is easy to obtain

V1σ
m
1 = V2σ

m
2 . (2)

Obviously the size effect is a direct consequence of the
Weibull distribution. In other words, the larger the size of
a specimen, the higher the probability of finding a criti-
cal defect and the smaller the strength of the corresponding
sample.1–3 For an inhomogeneous uniaxial stress state, such
as a miniature 4-point flexural strength test17 the above re-
lationship can be represented as

Veff,1σ
m
max,1 = Veff,2σ

m
max,2, (3)

where Veff is the effective volume subjected to the max-
imum stressσmax. This provides us with another experi-
mental procedure to test and verify the Weibull statistical
distribution.

Recently, fracture strengths of three ceramic materials,
i.e., Si3N4, SiC and ZnO, were tested, more details on the
experiments have been reported in other papers.8,9 As il-
lustrated inFig. 1, for Si3N4 and SiC, the mean strength
decreases with the increase of the effective volume of a
specimen. In the case of ZnO, however, the mean strength
of specimens remains almost constant with the increase of
their effective volumes, that is to say, there is no clear size
effect as would be expected from the Weibull distribution,
see solid arrow lines inFig. 1.

The Weibull distribution has been found to successfully
describe a large number of fracture data from brittle materi-
als. This does not mean, however, that the Weibull distribu-
tion is always in preference to other distributions, such as the
normal, log-normal distributions, etc. As the amount of sam-
ples used in experiments is limited, it is often very difficult to
clearly distinguish between the Weibull and other distribu-
tions in some real cases. In order to highlight the difference
between two possibly favourite distributions, we introduced
a simple quantitative procedure, i.e., the so-called Akaike
information criterion (AIC), which is defined as AIC=
−2 ln L̂ + 2k, where lnL̂ is the maximum log-likelihood
for a given distribution andk is the number of parame-
ters to be fitted in the distribution.9,18 Then it was applied
to the fit of strength data of three ceramic materials men-
tioned above. The results showed that, for Si3N4 and SiC,
the Weibull distribution fits the data better than the normal
distribution, but in the case of ZnO, the result is just the
opposite, and the normal distribution may be a preferred
choice.9

Strictly speaking, the hypotheses formulated to get the
Weibull distribution are not always correct or necessary in
real applications. Based on as few assumptions as possi-
ble (mainly the weakest link concept and no interaction be-
tween defects), a general strength distribution can be derived
as:19–21

P(σ, V) = 1 − exp[− 〈Nc(σ, V)〉], (4)

where 〈Nc(σ, V)〉 is the expectation value of critical de-
fects in a specimen of sizeV. Note here, that the weak-
est link argument does not yield any specific form for
〈Nc(σ, V)〉. In general, the flaw density strongly decreases
as the flaw sizea increases, and then the frequency distri-
butionn(a) can be approximated by a simple inverse power
law

n(a) = n0

(
a

a0

)−r

, (5)

where n0, a0, and r are material parameters. In addition,
a crack-like defect is often found in brittle materials, and,
based on the Griffith fracture criterion, the relationship be-
tween a critical flaw sizeac and fracture strength�f can be
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Fig. 1. Experimental results for three ceramics regarding the dependence of mean strengths on effective volumes. Numerals are the number of experiments,
and error bars refer to the 95% confidence band (the higher the number of tests, the smaller the scatter of data). Solid arrow lines, with a slope of
–1/m, indicate the size effect extrapolated by the Weibull distribution. Here the Weibull modulim determined by the sample with the single size and the
largest specimens (55 for Si3N4, 75 for SiC and 109 for ZnO) are 13.9, 9.6, and 20.9 for Si3N4, SiC and ZnO, respectively. The dashed line indicates
the arithmetic mean strengthσf = 102.37 MPa of the sample with the largest specimens.

represented as

ac = 1

π

(
Kc

Yσf

)2

, (6)

where Kc is the critical stress intensity factor andY is a
dimensionless geometrical factor.1–3 InsertingEqs. (5) and
(6) into Eq. (4), we can easily obtain the Weibull distri-
bution function, as indicated byEq. (1), and the Weibull
modulus which characterises the size distribution of flaws,
m = 2(r − 1). So it becomes obvious from these obser-
vations that the Weibull distribution is only a special case
of this general strength distribution function. This can pro-
vide us with some hints for the understanding of experi-
mental discoveries, such as the effects of inhomogeneous or
multi-modal flaw distribution, theR-curve behaviour, high
porosity, etc. However, more comprehensive investigations
on the relationship between fracture strength and microstruc-
tures should be conducted. Although almost all established
methods of designing with ceramic materials are based on
the Weibull statistics, in cases like the ZnO ceramics men-
tioned above, designing on this theory could lead to an over-
estimation or underestimation of the tolerable design stress,
as shown inFig. 1.

3. Description of the models

Recent experiments on electroceramic components, such
as high power varistors and positive temperature coefficient
(PTC) switching components, showed that failure starts at
internal flaws which could be traced back to green bodies
or powder agglomerates.11–13 Due to the trend to increase
power densities in electrical devices, the mechanical loads

imposed on these components increase, and problems with
insufficient mechanical strength get more and more severe.
It is surprising, however, that relatively few investigations
exist about the mechanical failure of electroceramics.13

As exemplified inFig. 2, the real configuration of flaws
in ZnO ceramics is very complex. In a first approxima-
tion, the intrusions formed by impingement of neighbouring
grains can be described by a Saturn ring-like crack around a
pore. Based on fractographic evidence, a mechanical model
for brittle fracture must take into account the interaction
of two different defect populations: intrinsic defects on the
microstructural level such as grain boundaries which are
regarded as nucleation sites for microcracks, and process-
ing defects such as pores or inclusions that act as stress
concentrators.14–16

In the ZnO ceramics discussed above, a typical flaw is
represented by a pore with cusps or sharp grooves, as can
be seen inFig. 2aand is modelled inFig. 3a. Here there are
three characteristic length scales: the pore radiusR, the grain
radiusr, and the notch depthc. If the groove angleθ = 0, the
notch depthc can be determined by a simple relationship,
c = √

R(R + 2r)−R, that is to say, the independent param-
eters shrink to two, and the sharp groove is similar to a crack
with curved faces. According to fractographic investigations
on ZnO ceramics, the mean radiusR of critical pores is in
the range of 25–100�m, and the radiusr of grains is in the
range of 2–10�m.11–13 The mechanical properties of ZnO
are: the elastic modulusE = 100 GPa and Poisson’s ratio
ν = 0.36.22 In addition, it is worth noting that the degree
of porosity in ZnO is as high as 5 vol.%. Due to the hetero-
geneous distribution of defects, often clusters exist formed
by a group of pores, as can be seen inFig. 2band is illus-
trated inFig. 3b, and even clustering of sub-clusters occurs.
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Fig. 2. A typical fracture origin (a) and a cluster of pores (b) in ZnO ceramics.

Fig. 3. Sketch of two-dimensional models of defects in ZnO ceramics. (a) A single pore with cusps or sharp grooves formed by neighbouring grains,
and (b) a typical cluster formed by several pores due to heterogeneous distribution of defects.d is the internal distance of the cluster, the numbers 1 and
2 indicate the inner and outer cracks, respectively.

Thus, the interaction (the stress shielding or intensification)
between pores or clusters may also play an important role
in determining the fracture strength of ZnO ceramics.

4. Finite element analysis

Several approaches exist for the analytical and numerical
investigations of materials with a certain flaw distribution.
Maybe the most direct method is to study a multicrack sys-
tem based on the theory of elasticity and conformal mapping
or numerical methods.23,24 A second approach can be de-
scribed by a lattice model for the simplest discretisation of a
material with flaws.25,26 A third approach is closely related
to the concept of continuum damage mechanics.27 Here the
numerical tools such as the finite element method may be
applied more easily for realistic defect configurations to
be investigated. In the following analysis, the stress fields
and stress intensity factors for a pore with sharp grooves
or its cluster, as illustrated inFig. 3, are evaluated using
the finite element code ABAQUS/Standard V.5.8 (Hibbitt,
Karlsson and Sorensen Inc., 1998,http://www.hks.com);

meshing was mainly carried out with the preprocessor
code PATRAN V.9.0 (MacNeal-Schwendler Corp., 1998,
http://www.mscsoftware.com).

It is worth noting that the two-dimensional model used
here attempts to simplify the numerical calculations and pro-
vide a rough approximation for the understanding of the
general tendency of the effects of pore/grain interaction on
strength, but more sophisticated three-dimensional analyses,
as in some recent works,14–16 are needed in order to get an
exact equation for the effects of pore/grain-size interaction
and porosity.

4.1. Stress singularity of a sharp groove

For the sake of simplicity, let the radii (R andr) of a pore
and grains surrounding the pore be constants, as shown in
Fig. 3a. Different notch anglesθ can be obtained via the
change of the depthc to a groove tip. The cases for every 10◦
interval ofθ were chosen, and the stress field in the vicinity
of a sharp groove was calculated. The results show that, as
we expected, the stress singularity takes the formσ ∝ r−α,
where the singularity orderα is closely related to the angleθ

http://www.hks.com
http://www.mscsoftware.com
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Fig. 4. The stress singularity exponentα in the vicinity of a sharp groove vs. its angleθ. For comparison Williams’ analytical result for a sharp notch
is also plotted (solid line).

of a groove, and changes from 0.5 (θ = 0◦) to 0 (θ = 180◦)
(seeFig. 4). The detailed structure of the groove-tip stress
field differs from that of a common crack. Specifically, this
singularity still exists even under compressive stress since
groove surfaces do not touch.

The problem of the stresses in the notch edge vicinity was
solved by Williams.28 The relationship between the singu-
larity orderα and the notch angleθ can be represented by

sin [(1 − α)(2π − θ)] − (1 − α) sinθ = 0. (7)

It is obvious to see that the stress singularity of a sharp
groove is weaker than that of a sharp notch, as shown in
Fig. 4. The difference to Williams’ analytical result reflects
the influence of the groove shape. Here it is of interest to
note that the singularity orderα = 0.5 if θ = 0, and the
groove reduces to a crack-like sharp notch. In fact such a
sharp groove is often developed in order to keep the surface
energy to a minimum, and it is the case we will discuss in
the following.

4.2. Effect of pore/grain-size interaction on fracture

Recent development of ABAQUS allows for studies of
the stress intensity factors in a multicrack system in which
a domain integral technique is used to calculate the contour
integralJ. This method can provide high accuracy with rel-
atively coarse meshing. It is worth noting that, as illustrated
in Fig. 3, the crack (i.e., sharp groove) faces are curved, and
a positive stress intensity factor also exists in the case of
global compressive loading. The normals to the crack faces
that lie within the domains used for the contour integrals
must be specified in the calculation in order to keep the
J-integral to be path independent. At the same time, finite
strain analysis is used in order to model the possible large
displacement field around the groove tip under compressive

loading. OnceJ values are known, the stress intensity fac-
tors can be obtained by

K =
√

JE

1 − ν2
. (8)

Three kinds of pores (R = 25, 50, and 100�m) with sharp
grooves, formed by various grain sizes were calculated. The
stress intensity factors of a pore with sharp grooves can be
written as

K = F
( r

R

)
σ
√

πc, (9)

where F is a correction factor.29,30 For a shallow groove
(r � R), the crack tip is embedded within the local stress
concentration of a pore andF ≈ 1.12× 3 = 3.36. As one
might expect,F drops quickly whenr increases because the
crack runs out of the high stress concentration region (see
Fig. 5).

Fig. 5. The geometric correction factorF(r/R) vs. the ratio of grain and
pore sizesr/R. The inset shows the relationship betweenF(r/R) and the
square root ofr/R.
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Fig. 6. The normalised stress intensity factor vs. the ratio of grain and pore
sizes. Here three kinds of pores with radiusR = 25, 50, and 100�m were
calculated. The depth of a sharp groovec can be determined by the simple
geometrical relationship,c/R = √

1 + 2r/R−1. HereK0 = σ
√

π(R + c).
For more details of the model, seeFig. 3a.

For the cases studied here, the pore should be consid-
ered as a part of the crack.Fig. 6 shows the variation of
the normalised stress intensity factor,K/K0, versus the ra-
tio of grain and pore sizes,r/R. Here we define the stress
intensity factor for a crack with the length (R + c) as a ref-
erence, i.e.,K0 = σ

√
π(R + c), whereσ is the nominated

stress used in the calculation. It is easy to see that the nor-
malised stress intensity factorK/K0 is closely related to the
ratio of grain and pore sizes. For smaller pores and constant
grain size, the normalised stress intensity factor is greater
than that for big ones. In other words, the size distribu-
tion of critical flaws tends to be more homogeneous. Here

1

2

Fig. 7. A more realistic finite element model of defects in ZnO ceramics.
Here R = 50�m and r = 10�m, and 8-node plane strain elements are
used in the analysis. Due to the geometrical symmetry, the quadrant of
the model is considered.

Fig. 8. The normalised stress intensity factor vs. the ratio of cluster and
pore sizes for a single cluster of pores. HereK1 indicates the stress
intensity factor of a single pore, andr/R = 0.1. For more details of the
model, seeFig. 3b.

a caution should be given that numerical errors increase
as the ratior/R becomes bigger, but the tendency is not
influenced.

The real configuration of a pore in ZnO ceramics is much
more complex than that we supposed in this simple model.
One may argue that at least two or more grooves should be
used to simulate the irregular concave surface shape formed
by grains surrounding a pore. Further numerical analysis for
a more realistic model was carried out, in which three sharp
grooves were introduced (Fig. 7). Note here, that the crack
2 lies in a mixed-mode loading, and theJ-integral does not
distinguish between modes of loading. However, this dif-
ficulty can be overcome by using the crack face displace-
ments. The result showed that the stress intensity factor at
the middle groove tip (crack 1 inFig. 7) decreases by 12%
compared to that of the single groove as indicated above due
to the shielding influence of its neighbouring grooves. Com-
pared to the influence of the ratio of grain and pore sizes
discussed above, it is less important and was omitted for
simplicity.

Fig. 9. The normalised stress intensity factor vs. the ratio of cluster and
pore sizes for clustering with a periodic distribution. HereD indicates
the distance between two clusters,K1 is the stress intensity factor of a
single pore, andr/R = 0.1. For more details of the model, seeFig. 3b.
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4.3. Effect of porosity on fracture

In general many ceramics have some degree of porosity.
It is intuitively evident that elastic moduli and strength will

Fig. 10. The maximum principal stress patterns due to the interaction of pores in a single cluster (a) and a clustering with a periodic distribution (b),
where red colour represents the highest stress and the dark blue represents the lowest stress. Herer/R = 0.1, d/R = 2, andD/R = 2. The tensile load
σ = 100 MPa is applied along the vertical direction, and the periodic boundary conditions are introduced in (b).

decrease as porosity increases. This is an open and difficult
problem although considerable research has been done. As
is well known, the interaction between defects is sensitive to
the details of their geometrical arrangement. Especially the
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mechanical properties such as fracture strength discussed
here are closely related to local rather than average prop-
erties; consequently it is not easy, and even impossible to
establish a deterministic relationship.23,31,32 Next, in order
to qualitatively understand the possible influence of the high
degree of porosity on the fracture strength of ZnO ceramics,
two typical cases are studied: one being a single cluster as
illustrated inFig. 3band the other a periodic distribution of
the single cluster.

As shown inFig. 8, shielding for the inner crack, i.e., the
crack 1 inFig. 3b, will be effective if the distance between
pores approaches a certain threshold. Due to heterogeneous
distribution of microstructures and defects, clustering of de-
fects is often found in specimens. The main reason can be
a multi-modal powder size distribution. Here the cluster-
ing behaviour is modelled by a periodic array of clusters
with distanceD, which is defined as the distance between
the centres of two clusters. The shielding effect discussed
above is more evident as shown inFig. 9. The stress inten-
sity factor of the inner crack decreases when the ratiod/R
is about less than two, which corresponds approximately to
5 vol.% for pores uniformly distributed in the specimen. The
normalised stress intensity factors of both inner and outer
cracks decrease, as comparing the stress distribution for the
two cases (Fig. 10). This means that clustering will further
increase the homogeneities of critical flaw sizes, at least for
this special defect configuration in ZnO ceramics. We should
also notice that the results obtained here are merely instruc-
tive and qualitative but, at the same time, the approximation
of two-dimensional model will lead to an overestimation of
shielding.

5. Discussion and a simple statistical explanation

The absence of the size effect discovered from experi-
ments on the fracture strength of ZnO ceramics manifests
a deviation from the Weibull distribution. Another distri-
bution such as normal or log-normal distribution might
be used in the analysis of strength data, which has been
corroborated by further statistical analysis. As discussed
above, the grain size has a clear effect on the fracture
strength of ZnO ceramics. It is usually found that grain
size distributions measured are approximately log-normally
distributed.33

Contrary to Si3N4 and SiC ceramics where crack-like
flaws are sparsely distributed, flaws in ZnO ceramics, i.e.,
pores with sharp grooves, are determined by many inde-
pendent and random factors such as size, location, even the
degree of porosity, etc. Thus we can expect that strength
data yield the Weibull distribution in Si3N4 and SiC ceram-
ics, but it is not so in ZnO ceramics. The probability of a
flaw becoming critical in ZnO ceramics may be described
p = ∏

pi, wherepi denotes the probability ofith influen-
tial driver. So taking logarithms of both sides we have log
p = ∑

pi. Sincepi are independent random variables, the

central limit theorem is applicable, and logp has a normal
distribution just as we expected.

As a consequence of the interaction of pore/grain size and
a high porosity in ZnO ceramics, a group of pores as well
as their cluster could affect the final fracture compared to
only the largest defect as the Weibull weakest link model
postulates. Here we attempt to give a simple statistical ex-
planation. Let us suppose that the number of defects in a
given specimen isN, and the failure probability of a defect
is p. For the sake of simplicity, the interaction between pores
is neglected. The failure probability ofn defects can thus
be written asPN(n) = {N!/[n!(N − n)!]}pn(1 − p)N−n.
As is well known,34 there are two special cases for this bi-
nomial distribution in the limit of largeN. If p is not too
small (this seems to be corresponding to the case of ZnO),
the binomial distribution is approaching the normal distri-
bution. By contrast, ifp � 1, we have the Poisson distri-
bution PN(n) = an exp(−a)/n!, wherea = Np. Next, let
n = 0 one can easily obtainPN(0) = exp(−Np) and then
the weakest link model can be described in the formF =
1 − PN(0) = 1 − exp(−Np). Compared withEq. (4), ob-
viously the Weibull distribution is only a special case, and
thus it is not surprising that no size effect was discovered in
ZnO ceramics (seeFig. 1).

Finally, it is worth noting that the results obtained here are
based on a two-dimensional model. The three-dimensional
configuration of defects in ZnO ceramics could be described
by a spherical pore with some kinds of sharp cracks, such as
a circumferential crack, a semicircular crack, and a circular
crack.14–16 The numerical analysis of the three-dimensional
model is much more complex since we need to consider
the special configuration of defects and their arrangement,
but is worthy of investigation in the future. At the same
time, the behaviour could also be explained by other possible
reasons such as the presence of theR-curve characteristics
as commonly observed in ceramics, which often reduces the
strength variability.35,36

6. Concluding remarks

Based on both experiments of fracture strength and nu-
merical analysis of the effects of pore/grain-size interaction
and porosity on fracture strength in ZnO ceramics, the fol-
lowing conclusions can be drawn:

• The Weibull distribution could be widely used in the
analysis of strength data and size effect. Recent ex-
periments on the fracture strength of electroceram-
ics, however, have shown that it is not always so.
The strength distribution may be the normal or other
distributions rather than the Weibull distribution due
to the influence of many independent and random
factors.

• The stress singularity of a sharp groove formed by grains
around a pore is closely related to its angle.
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• The fracture strength in ZnO ceramics is more in-
fluenced by the ratio of pore and grain sizes or
pore/grain-size interaction than only by the size of crit-
ical pores. As a consequence the pore/grain-size inter-
action increases the fracture probability of small pores
and decreases the fracture probability of large pores.
This fact yields a homogenisation of the critical flaw
sizes.

• The high degree of porosity, especially the heterogeneous
distribution and clustering of pores, could favour further
homogenisation of critical crack sizes in ZnO ceramics.
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